Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: Algorithm description and quantitative evaluation with MicroBooNE simulation

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and dQ/dx (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30% for charged-current νe interactions. This pattern recognition achieves 80-90% reconstruction efficiencies for primary leptons, after a 65.8% (72.9%) vertex efficiency for charged-current νe (νμ) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20% energy reconstruction resolutions for charged-current neutrino interactions.

שפה מקוריתאנגלית
מספר המאמרP01037
כתב עתJournal of Instrumentation
כרך17
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ינו׳ 2022

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3105???
  • ???subjectarea.asjc.2600.2610???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: Algorithm description and quantitative evaluation with MicroBooNE simulation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי