Volume Prediction With Neural Networks

Daniel Libman, Simi Haber, Mary Schaps

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Changes in intraday trading volume are integral to any algorithmic trading strategy. Accordingly, forecasting the change in trading volume is paramount to better understanding the financial markets. This paper introduces a new method to forecast the log change in trading volume, leveraging the power of Long Short Term Memory (LSTM) networks in conjunction with Support Vector Regression (SVR) and Autoregressive (AR) models. We show that LSTM contributes to a more accurate forecast, particularly when constructed as part of a hybrid model with AR. The algorithm is extended to include data about the time of day, helping the model associate the log change in trading volume with the current hour, which yields the best performance of all trials.

שפה מקוריתאנגלית
מספר המאמר21
כתב עתFrontiers in Artificial Intelligence
כרך2
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 9 אוק׳ 2019

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1702???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Volume Prediction With Neural Networks'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי