Voiced-Unvoiced-Silence Classification via Hierarchical Dual Geometry Analysis

Maya Harel, David Dov, Israel Cohen, Ron Meir, Ronen Talmon

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


The need for a reliable discrimination among
voiced, unvoiced and silence frames arises in a wide variety of
speech processing applications. In this paper, we propose an
unsupervised algorithm for voiced-unvoiced-silence classification
based on a time-frequency representation of the measured signal,
which is viewed as a data matrix. The proposed algorithm relies
on a hierarchical dual geometry analysis of the data matrix,
which exploits the strong coupling between time frames and
frequency bins. By gradually learning the coupled geometry in
two steps, the algorithm allows for the separation between speech
and silent frames, and then between voiced and unvoiced frames.
Experimental results demonstrate the improved performance
compared to a competing algorithm
שפה מקוריתאנגלית אמריקאית
כותר פרסום המארחISCEE International Conference on the Science of Electrical Engineering 2016
סטטוס פרסוםפורסם - 2016

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Voiced-Unvoiced-Silence Classification via Hierarchical Dual Geometry Analysis'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי