Sub-pixel target detection using local spatial information in hyperspectral images

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

We present two methods to improve the well-known algorithms for hyperspectral point target detection: the constrained energy minimization algorithm (CEM), the Generalized Likelihood Ratio Test algorithm (GLRT) and the adaptive coherence estimator algorithm (ACE). The original algorithms rely solely on spectral information and do not use spatial information; this is normally justified in subpixel target detection since the target size is smaller than the size of a pixel. However, we have found that, since the background (and the false alarms) may be spatially correlated and the point spread function can distribute the energy of a point target between several neighboring pixels, we should consider spatial filtering algorithms. The first improvement uses the local spatial mean and covariance matrix which take into account the spatial local mean instead of the global mean. The second considers the fact that the target physical sub-pixel size will appear in a cluster of pixels. We test our algorithms by using the dataset and scoring methodology of the Rochester Institute of Technology (RIT) Target Detection Blind Test project. Results show that both spatial methods independently improve the basic spectral algorithms mentioned above; when used together, the results are even better.

שפה מקוריתאנגלית אמריקאית
כותר פרסום המארחElectro-Optical Remote Sensing, Photonic Technologies, and Applications V
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 18 נוב׳ 2011
אירועElectro-Optical Remote Sensing, Photonic Technologies, and Applications V - Prague, צ'כיה
משך הזמן: 19 ספט׳ 201122 ספט׳ 2011

סדרות פרסומים

שםProceedings of SPIE - The International Society for Optical Engineering
כרך8186

כנס

כנסElectro-Optical Remote Sensing, Photonic Technologies, and Applications V
מדינה/אזורצ'כיה
עירPrague
תקופה19/09/1122/09/11

ASJC Scopus subject areas

  • ???subjectarea.asjc.2500.2504???
  • ???subjectarea.asjc.3100.3104???
  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.2600.2604???
  • ???subjectarea.asjc.2200.2208???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Sub-pixel target detection using local spatial information in hyperspectral images'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי