Shape segmentation by approximate convexity analysis

Oliver Van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, Daniel Cohen-Or

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


We present a shape segmentation method for complete and incomplete shapes. The key idea is to directly optimize the decomposition based on a characterization of the expected geometry of a part in a shape. Rather than setting the number of parts in advance, we search for the smallest number of parts that admit the geometric characterization of the parts. The segmentation is based on an intermediate-level analysis, where first the shape is decomposed into approximate convex components, which are then merged into consistent parts based on a nonlocal geometric signature. Our method is designedto handle incomplete shapes, represented by point clouds.We show segmentation results on shapes acquired by a range scanner, and an analysis of the robustness of our method to missing regions. Moreover, our method yields results that are comparable to state-of-the-art techniques evaluated on complete shapes.

שפה מקוריתאנגלית
כתב עתACM Transactions on Graphics
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 29 דצמ׳ 2014

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1704???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Shape segmentation by approximate convexity analysis'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי