Serve the shortest queue and Walsh Brownian motion

Rami Atar, Asaf Cohen

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We study a single-server Markovian queueing model with N customer classes in which priority is given to the shortest queue. Under a critical load condition, we establish the diffusion limit of the nominal workload and queue length processes in the form of a Walsh Brownian motion (WBM) living in the union of the N nonnegative coordinate axes in ℝN and a linear transformation thereof. This reveals the following asymptotic behavior. Each time that queues begin to build starting from an empty system, one of them becomes dominant in the sense that it contains nearly all the workload in the system, and it remains so until the system becomes (nearly) empty again. The radial part of the WBM, given as a reflected Brownian motion (RBM) on the half-line, captures the total workload asymptotics, whereas its angular distribution expresses how likely it is for each class to become dominant on excursions. As a heavy traffic result, it is nonstandard in three ways: (i) In the terminology of Harrison (In Stochastic Networks (1995) 1–20 Springer), it is unconventional, in that the limit is not a RBM. (ii) It does not constitute an invariance principle, in that the limit law (specifically, the angular distribution) is not determined solely by the first two moments of the data, and is sensitive even to tie breaking rules. (iii) The proof method does not fully characterize the limit law (specifically, it gives no information on the angular distribution).

שפה מקוריתאנגלית
עמודים (מ-עד)613-651
מספר עמודים39
כתב עתAnnals of Applied Probability
כרך29
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - פבר׳ 2019

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2613???
  • ???subjectarea.asjc.1800.1804???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Serve the shortest queue and Walsh Brownian motion'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי