SASA: Source-Aware Self-Attention for IP Hijack Detection

Tal Shapira, Yuval Shavitt

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

IP hijack attacks deflect traffic between endpoints through the attacker network, leading to man-in-the-middle attacks. Current detection solutions are only based on AS-level path analysis, while attacks that include data-plane manipulations may exhibit only geographic anomalies and preserve the AS-level route, or hide the problematic AS in the path. Thus, there is a need to develop data-plane analysis frameworks that examine the actual route packets traverse. We introduce here a deep learning system that examines the geography of traceroute measurements to detect malicious routes. We use multiple geolocation services, with various levels of confidence; each also suffers from location errors. Moreover, identifying a hijacked route is not sufficient since an operator presented with a hijack alert needs an indication of the cause for flagging out the problematic route. Thus, we introduce a novel deep learning layer, called Source-Aware Self-Attention (SASA), which is an extension of the attention mechanism. SASA learns each data source's confidence and combines this score with the attention of each router in the route to point out the most problematic one. We validate our IP hijacking classification method using two router data types: coordinates and country location, and show that SASA outperforms the regular self-attention layer, using the same neural network architecture, and achieves extremely high accuracy.

שפה מקוריתאנגלית
עמודים (מ-עד)437-449
מספר עמודים13
כתב עתIEEE/ACM Transactions on Networking
כרך30
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 פבר׳ 2022

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1712???
  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.1700.1705???
  • ???subjectarea.asjc.2200.2208???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'SASA: Source-Aware Self-Attention for IP Hijack Detection'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי