Resolving sets and integer programs for recommender systems

Alain Hertz, Tsvi Kuflik, Noa Tuval

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.

שפה מקוריתאנגלית אמריקאית
עמודים (מ-עד)153-178
מספר עמודים26
כתב עתJournal of Global Optimization
כרך81
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ספט׳ 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1706???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.1800.1803???
  • ???subjectarea.asjc.2600.2604???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Resolving sets and integer programs for recommender systems'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי