PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning

Dor Livne, Kobi Cohen

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


The recent success of deep neural networks (DNNs) for function approximation in reinforcement learning has triggered the development of Deep Reinforcement Learning (DRL) algorithms in various fields, such as robotics, computer games, natural language processing, computer vision, sensing systems, and wireless networking. Unfortunately, DNNs suffer from high computational cost and memory consumption, which limits the use of DRL algorithms in systems with limited hardware resources. In recent years, pruning algorithms have demonstrated considerable success in reducing the redundancy of DNNs in classification tasks. However, existing algorithms suffer from a significant performance reduction in the DRL domain. In this article, we develop the first effective solution to the performance reduction problem of pruning in the DRL domain, and establish a working algorithm, named Policy Pruning and Shrinking (PoPS), to train DRL models with strong performance while achieving a compact representation of the DNN. The framework is based on a novel iterative policy pruning and shrinking method that leverages the power of transfer learning when training the DRL model. We present an extensive experimental study that demonstrates the strong performance of PoPS using the popular Cartpole, Lunar Lander, Pong, and Pacman environments. Finally, we develop an open source software for the benefit of researchers and developers in related fields.

שפה מקוריתאנגלית אמריקאית
מספר המאמר8962235
עמודים (מ-עד)789-801
מספר עמודים13
כתב עתIEEE Journal on Selected Topics in Signal Processing
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 מאי 2020

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1711???
  • ???subjectarea.asjc.2200.2208???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'PoPS: Policy Pruning and Shrinking for Deep Reinforcement Learning'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי