On the Richter-Thomassen Conjecture about Pairwise Intersecting Closed Curves

János Pach, Natan Rubin, Gábor Tardos

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

A long-standing conjecture of Richter and Thomassen states that the total number of intersection points between any n simple closed Jordan curves in the planȩ so that any pair of them intersect and no three curves pass through the same point, is at least (1-o(1))n2. We confirm the above conjecture in several important cases, including the case (1) when all curves are convex, and (2) when the family of curves can be partitioned into two equal classes such that each curve from the first class touches every curve from the second class. (Two closed or open curves are said to be touching if they have precisely one point in common and at this point the two curves do not properly cross.) An important ingredient of our proofs is the following statement. Let S be a family of n open curves in R2, so that each curve is the graph of a continuous real function defined on R, and no three of them pass through the same point. If there are nt pairs of touching curves in S, then the number of crossing points is Ω(nt log t/log log t).

שפה מקוריתאנגלית אמריקאית
עמודים (מ-עד)941-958
מספר עמודים18
כתב עתCombinatorics Probability and Computing
כרך25
מספר גיליון6
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 נוב׳ 2016

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.2600.2613???
  • ???subjectarea.asjc.1700.1703???
  • ???subjectarea.asjc.2600.2604???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On the Richter-Thomassen Conjecture about Pairwise Intersecting Closed Curves'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי