On Non-Topological Solutions for Planar Liouville Systems of Toda-Type

Arkady Poliakovsky, Gabriella Tarantello

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Motivated by the study of non-abelian Chern Simons vortices of non-topological type in Gauge Field Theory, see e.g. Gudnason (Nucl Phys B 821:151–169, 2009), Gudnason (Nucl Phys B 840:160–185, 2010) and Dunne (Lecture Notes in Physics, New Series, vol 36. Springer, Heidelberg, 1995), we analyse the solvability of the following (normalised) Liouville-type system in the presence of singular sources: (Formula presented.) with τ> 0 and N> 0. We identify necessary and sufficient conditions on the parameter τ and the “flux” pair: (β1, β2) , which ensure the radial solvability of (1) τ. Since for τ=1/2, problem (1)τ reduces to the (integrable) 2 × 2 Toda system, in particular we recover the existence result of Lin et al. (Invent Math 190(1):169–207, 2012) and Jost and Wang (Int Math Res Not 6:277–290, 2002), concerning this case. Our method relies on a blow-up analysis for solutions of (1)τ, which (even in the radial setting) takes new turns compared to the single equation case. We mention that our approach also permits handling the non-symmetric case, where in each of the two equations in (1)τ, the parameter τ is replaced by two different parameters τ1> 0 and τ2> 0 respectively, and also when the second equation in (1)τ includes a Dirac measure supported at the origin.

שפה מקוריתאנגלית אמריקאית
עמודים (מ-עד)223-270
מספר עמודים48
כתב עתCommunications in Mathematical Physics
כרך347
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 אוק׳ 2016

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.2600.2610???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'On Non-Topological Solutions for Planar Liouville Systems of Toda-Type'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי