תקציר
Let π: M→ B be a Riemannian submersion of two compact smooth Riemannian manifolds, B is connected. Let M(ε) denote the manifold M equipped with the new Riemannian metric which is obtained from the original one by multiplying by ε along the vertical subspaces (i.e. along the fibers) and keeping unchanged along the (orthogonal to them) horizontal subspaces. Let Vi(M(ε)) denote the ith intrinsic volume. The main result of this note says that lim ε→+Vi(M(ε)) = χ(Z) Vi(B) where χ(Z) denotes the Euler characteristic of a fiber of π.
שפה מקורית | אנגלית |
---|---|
מספר המאמר | 23 |
כתב עת | Journal of Geometry |
כרך | 113 |
מספר גיליון | 1 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - אפר׳ 2022 |
ASJC Scopus subject areas
- ???subjectarea.asjc.2600.2608???