Neumann Domains on Quantum Graphs

Lior Alon, Ram Band

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The Neumann points of an eigenfunction f on a quantum (metric) graph are the interior zeros of f. The Neumann domains of f are the sub-graphs bounded by the Neumann points. Neumann points and Neumann domains are the counterparts of the well-studied nodal points and nodal domains. We prove bounds on the number of Neumann points and properties of the probability distribution of this number. Two basic properties of Neumann domains are presented: the wavelength capacity and the spectral position. We state and prove bounds on those as well as key features of their probability distributions. To rigorously investigate those probabilities, we establish the notion of random variables for quantum graphs. In particular, we provide conditions for considering spectral functions of quantum graphs as random variables with respect to the natural density on N.

שפה מקוריתאנגלית
עמודים (מ-עד)3391-3454
מספר עמודים64
כתב עתAnnales Henri Poincare
כרך22
מספר גיליון10
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוק׳ 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.3100.3106???
  • ???subjectarea.asjc.2600.2610???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Neumann Domains on Quantum Graphs'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי