Multidimensional scaling of noisy high dimensional data

Erez Peterfreund, Matan Gavish

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Multidimensional Scaling (MDS) is a classical technique for embedding data in low dimensions, still in widespread use today. In this paper we study MDS in a modern setting - specifically, high dimensions and ambient measurement noise. We show that as the ambient noise level increases, MDS suffers a sharp breakdown that depends on the data dimension and noise level, and derive an explicit formula for this breakdown point in the case of white noise. We then introduce MDS+, a simple variant of MDS, which applies a shrinkage nonlinearity to the eigenvalues of the MDS similarity matrix. Under a natural loss function measuring the embedding quality, we prove that MDS+ is the unique, asymptotically optimal shrinkage function. MDS+ offers improved embedding, sometimes significantly so, compared with MDS. Importantly, MDS+ calculates the optimal embedding dimension, into which the data should be embedded.

שפה מקוריתאנגלית אמריקאית
עמודים (מ-עד)333-373
מספר עמודים41
כתב עתApplied and Computational Harmonic Analysis
כרך51
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - מרץ 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2604???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Multidimensional scaling of noisy high dimensional data'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי