Marginally stable equilibria in critical ecosystems

Giulio Biroli, Guy Bunin, Chiara Cammarota

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

In this work we study the stability of the equilibria reached by ecosystems formed by a large number of species. The model we focus on are Lotka-Volterra equations with symmetric random interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneous interactions the system displays multiple equilibria which are all marginally stable. This property allows us to obtain general identities between diversity and single species responses, which generalize and saturate May's stability bound. By connecting the model to systems studied in condensed matter physics, we show that the multiple equilibria regime is analogous to a critical spin-glass phase. This relation suggests new experimental ways to probe marginal stability.

שפה מקוריתאנגלית
מספר המאמר083051
כתב עתNew Journal of Physics
כרך20
מספר גיליון8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - אוג׳ 2018

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3100???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Marginally stable equilibria in critical ecosystems'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי