Kernel Multi Label Vector Optimization (kMLVO): A unified multi-label classification formalism

Gilad Liberman, Tal Vider-Shalit, Yoram Louzoun

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

We here propose the kMLVO (kernel Multi-Label Vector Optimization) framework designed to handle the common case in binary classification problems, where the observations, at least in part, are not given as an explicit class label, but rather as several scores which relate to the binary classification. Rather than handling each of the scores and the labeling data as separate problems, the kMLVO framework seeks a classifier which will satisfy all the corresponding constraints simultaneously. The framework can naturally handle problems where each of the scores is related differently to the classifying problem, optimizing both the classification, the regressions and the transformations into the different scores. Results from simulations and a protein docking problem in immunology are discussed, and the suggested method is shown to outperform both the corresponding SVM and SVR.

שפה מקוריתאנגלית
כותר פרסום המארחLearning and Intelligent Optimization - 7th International Conference, LION 7, Revised Selected Papers
עמודים131-137
מספר עמודים7
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2013
אירוע7th International Conference on Learning and Intelligent Optimization, LION 7 - Catania, איטליה
משך הזמן: 7 ינו׳ 201311 ינו׳ 2013

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך7997 LNCS

כנס

כנס7th International Conference on Learning and Intelligent Optimization, LION 7
מדינה/אזוראיטליה
עירCatania
תקופה7/01/1311/01/13

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.1700.1700???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Kernel Multi Label Vector Optimization (kMLVO): A unified multi-label classification formalism'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי