Interpretable fields in various valued fields

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Let K=(K,v,…) be a dp-minimal expansion of a non-trivially valued field of characteristic 0 and F an infinite field interpretable in K. Assume that K is one of the following: (i) V-minimal, (ii) power bounded T-convex, or (iii) P-minimal (assuming additionally in (iii) generic differentiability of definable functions). Then F is definably isomorphic to a finite extension of K or, in cases (i) and (ii), its residue field. In particular, every infinite field interpretable in Qp is definably isomorphic to a finite extension of Qp, answering a question of Pillay's. Using Johnson's work on dp-minimal fields and the machinery developed here, we conclude that if K is an infinite dp-minimal pure field of characteristic 0 then every field definable in K is definably isomorphic to a finite extension of K. The proof avoids elimination of imaginaries in K replacing it with a reduction of the problem to certain distinguished quotients of K.

שפה מקוריתאנגלית אמריקאית
מספר המאמר108408
כתב עתAdvances in Mathematics
כרך404
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 6 אוג׳ 2022

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2600???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Interpretable fields in various valued fields'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי