Instability mechanisms of repelling peak solutions in a multi-variable activator-inhibitor system

Edgar Knobloch, Arik Yochelis

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

We study the linear stability properties of spatially localized single- and multi-peak states generated in a subcritical Turing bifurcation in the Meinhardt model of branching. In one spatial dimension, these states are organized in a foliated snaking structure owing to peak-peak repulsion but are shown to be all linearly unstable, with the number of unstable modes increasing with the number of peaks present. Despite this, in two spatial dimensions, direct numerical simulations reveal the presence of stable single- and multi-spot states whose properties depend on the repulsion from nearby spots as well as the shape of the domain and the boundary conditions imposed thereon. Front propagation is shown to trigger the growth of new spots while destabilizing others. The results indicate that multi-variable models may support new types of behavior that are absent from typical two-variable models.

שפה מקוריתאנגלית אמריקאית
מספר המאמר123129
כתב עתChaos
כרך32
מספר גיליון12
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 דצמ׳ 2022

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2604???
  • ???subjectarea.asjc.3100.3109???
  • ???subjectarea.asjc.3100.3100???
  • ???subjectarea.asjc.2600.2610???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Instability mechanisms of repelling peak solutions in a multi-variable activator-inhibitor system'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי