Improved CycleGAN with application to COVID-19 classification

Asaf Bar-El, Dana Cohen, Noa Cahan, Hayit Greenspan

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים


One of the major problems in medical imaging is the shortage of pathology data. In most cases, the acquisition of labeled data is expensive and usually involves manual labeling by a skilled medical expert. Because of this, most medical imaging tasks suffer from a severe class imbalance with a bias towards non-pathological classes, resulting in reduced performance. The recent growth in the use of generative adversarial networks and their ability to generate synthetic data shows great promise for reducing the class imbalance problem. In this work we introduce the GC-CycleGAN model, a general method for CycleGAN factorization, utilizing Grad-CAMs as auxiliary data in the CycleGAN model to generate synthetic images. Our novel approach utilizes Grad-CAMs ability to describe class activation and uses it for improved network classification, rather than as a visualization tool. The spread of the COVID-19 pandemic is affecting the lives of millions worldwide. If proven effective, automated COVID-19 detection from chest X-ray images can be a supportive step in the fight against COVID-19. However, the task of COVID-19 classification suffers greatly from the class imbalance problem. Using the GC-CycleGAN method, we demonstrate in this work the ability to balance a heavily imbalanced dataset for the task of COVID-19 vs. non-COVID-19 pneumonia X-ray classification. We show improved results over two baselines and the COVID-Net model.

שפה מקוריתאנגלית
כותר פרסום המארחMedical Imaging 2021
כותר משנה של פרסום המארחImage Processing
עורכיםIvana Isgum, Bennett A. Landman
מוציא לאורSPIE
מסת"ב (אלקטרוני)9781510640214
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2021
אירועMedical Imaging 2021: Image Processing - Virtual, Online, ארצות הברית
משך הזמן: 15 פבר׳ 202119 פבר׳ 2021

סדרות פרסומים

שםProgress in Biomedical Optics and Imaging - Proceedings of SPIE


כנסMedical Imaging 2021: Image Processing
מדינה/אזורארצות הברית
עירVirtual, Online

ASJC Scopus subject areas

  • ???subjectarea.asjc.2500.2504???
  • ???subjectarea.asjc.3100.3107???
  • ???subjectarea.asjc.2500.2502???
  • ???subjectarea.asjc.2700.2741???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Improved CycleGAN with application to COVID-19 classification'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי