Hierarchical Clustering: A 0.585 Revenue Approximation

Noga Alon, Yossi Azar, Dan Vainstein

פרסום מחקרי: פרק בספר / בדוח / בכנספרסום בספר כנסביקורת עמיתים

תקציר

Hierarchical Clustering trees have been widely accepted as a useful form of clustering data, resulting in a prevalence of adopting fields including phylogenetics, image analysis, bioinformatics and more. Recently, Dasgupta (STOC 16’) initiated the analysis of these types of algorithms through the lenses of approximation. Later, the dual problem was considered by Moseley and Wang (NIPS 17’) dubbing it the Revenue goal function. In this problem, given a nonnegative weight wij for each pair i, j ∈ [n] = {1, 2, . . . , n}, the objective is to find a tree T whose set of leaves is [n] that maximizes the function P
i<j∈[n] wij (n − |Tij |), where |Tij | is the number of leaves in the subtree
rooted at the least common ancestor of i and j.
In our work we consider the revenue goal function and prove the following results. First, we prove the existence of a bisection (i.e., a tree of depth 2 in which the root has two children, each being a parent of n/2 leaves) which approximates the general optimal tree solution up to a factor of
1/2 (which is tight). Second, we apply this result in order to prove a 2/3p approximation for the general revenue problem, where p is defined as the approximation ratio of the MAX-UNCUT BISECTION problem. Since p is known to be at least 0.8776 (Austrin et al., 2016) (Wu et al., 2015), we get a 0.585 approximation algorithm for the revenue problem. This improves a sequence of earlier results which culminated in an 0.4246-approximation guarantee (Ahmadian et al., 2019).
שפה מקוריתאנגלית
כותר פרסום המארחProceedings of Machine Learning Research
כותר משנה של פרסום המארחProceedings of Thirty Third Conference on Learning Theory, PMLR
עורכיםJacob Abernethy, Shivani Agarwal
עמודים153-162
מספר עמודים10
כרך125
סטטוס פרסוםפורסם - 2020
אירועConference on Learning Theory, COLT 2020 - Graz, אוסטריה
משך הזמן: 9 יולי 202012 יולי 2020
http://proceedings.mlr.press/v125/

כנס

כנסConference on Learning Theory, COLT 2020
כותר מקוצרcolt2020
מדינה/אזוראוסטריה
עירGraz
תקופה9/07/2012/07/20
כתובת אינטרנט

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Hierarchical Clustering: A 0.585 Revenue Approximation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי