Forecasting the magnitude and onset of El Nino based on climate network

Jun Meng, Jingfang Fan, Yosef Ashkenazy, Armin Bunde, Shlomo Havlin

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


El Ninois probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Ninoare still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Nino 3.4 region. We find that significant upward trends in our index forecast the onset of El Nino approximately 1 year ahead, and the highest peak since the end of last El Nino in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.

שפה מקוריתאנגלית אמריקאית
מספר המאמר043036
כתב עתNew Journal of Physics
מספר גיליון4
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 אפר׳ 2018

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3100???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Forecasting the magnitude and onset of El Nino based on climate network'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי