First-Order Methods for Convex Optimization

Pavel Dvurechensky, Shimrit Shtern, Mathias Staudigl

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

First-order methods for solving convex optimization problems have been at the forefront of mathematical optimization in the last 20 years. The rapid development of this important class of algorithms is motivated by the success stories reported in various applications, including most importantly machine learning, signal processing, imaging and control theory. First-order methods have the potential to provide low accuracy solutions at low computational complexity which makes them an attractive set of tools in large-scale optimization problems. In this survey, we cover a number of key developments in gradient-based optimization methods. This includes non-Euclidean extensions of the classical proximal gradient method, and its accelerated versions. Additionally we survey recent developments within the class of projection-free methods, and proximal versions of primal-dual schemes. We give complete proofs for various key results, and highlight the unifying aspects of several optimization algorithms.

שפה מקוריתאנגלית
מספר המאמר100015
כתב עתEURO Journal on Computational Optimization
כרך9
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ינו׳ 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2611???
  • ???subjectarea.asjc.1800.1803???
  • ???subjectarea.asjc.2600.2606???
  • ???subjectarea.asjc.2600.2605???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'First-Order Methods for Convex Optimization'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי