Enhancing scientific discoveries in molecular biology with deep generative models

Romain Lopez, Adam Gayoso, Nir Yosef

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Generative models provide a well‐established statistical framework for evaluating uncertainty and deriving conclusions from large data sets especially in the presence of noise, sparsity, and bias. Initially developed for computer vision and natural language processing, these models have been shown to effectively summarize the complexity that underlies many types of data and enable a range of applications including supervised learning tasks, such as assigning labels to images; unsupervised learning tasks, such as dimensionality reduction; and out‐of‐sample generation, such as de novo image synthesis. With this early success, the power of generative models is now being increasingly leveraged in molecular biology, with applications ranging from designing new molecules with properties of interest to identifying deleterious mutations in our genomes and to dissecting transcriptional variability between single cells. In this review, we provide a brief overview of the technical notions behind generative models and their implementation with deep learning techniques. We then describe several different ways in which these models can be utilized in practice, using several recent applications in molecular biology as examples.
שפה מקוריתאנגלית
מספר המאמרe9198
מספר עמודים21
כתב עתMolecular Systems Biology
כרך16
מספר גיליון9
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ספט׳ 2020
פורסם באופן חיצוניכן

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Enhancing scientific discoveries in molecular biology with deep generative models'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי