Coupling Geotechnical Numerical Analysis with Machine Learning for Observational Method Projects

Amichai Mitelman, Beverly Yang, Alon Urlainis, Davide Elmo

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


In observational method projects in geotechnical engineering, the final geotechnical design is decided upon during actual construction, depending on the observed behavior of the ground. Hence, engineers must be prepared to make crucial decisions promptly, with few available guidelines. In this paper, we propose coupling numerical analysis with machine learning (ML) algorithms for enhancing the decision process in observational method projects. The proposed methodology consists of two main computational steps: (1) data generation, where multiple numerical models are automatically generated according to the anticipated range of input parameters, and (2) data analysis, where input parameters and model results are analyzed with ML models. Using the case study of the Semel tunnel in Tel Aviv, Israel, we demonstrate how this computational process can contribute to the success of observational method projects through (1) the computation of feature importance, which can assist with better identifying the key features that drive failure prior to project execution, (2) providing insights regarding the monitoring plan, as correlative relationships between various results can be tested, and (3) instantaneous predictions during construction.

שפה מקוריתאנגלית
מספר המאמר196
כתב עתGeosciences (Switzerland)
מספר גיליון7
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יולי 2023

ASJC Scopus subject areas

  • ???subjectarea.asjc.1900.1900???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Coupling Geotechnical Numerical Analysis with Machine Learning for Observational Method Projects'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי