תקציר
Let M be a compact symplectic manifold endowed with a Hamiltonian action of a compact torus T with a moment map μ. Suppose there exists a symplectic involution θ : M → M, such that μ ◦ θ = −μ. Assuming that 0 is a regular value of μ, we calculate the character of the action of θ on the cohomology of M in terms of the trace of the action of θ on the symplectic reduction μ−1(0)/T of M. This result generalizes a theorem of R. Stanley, who considered the case when M was a toric variety and dim T = ½ dimℝM.
שפה מקורית | אנגלית |
---|---|
עמודים (מ-עד) | 325-340 |
מספר עמודים | 16 |
כתב עת | Journal of Symplectic Geometry |
כרך | 14 |
מספר גיליון | 1 |
מזהי עצם דיגיטלי (DOIs) | |
סטטוס פרסום | פורסם - 2016 |
ASJC Scopus subject areas
- ???subjectarea.asjc.2600.2608???