Can Nonlinear Parametric Oscillators Solve Random Ising Models?

Marcello Calvanese Strinati, Leon Bello, Emanuele G. Dalla Torre, Avi Pe'er

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


We study large networks of parametric oscillators as heuristic solvers of random Ising models. In these networks, known as coherent Ising machines, the model to be solved is encoded in the coupling between the oscillators, and a solution is offered by the steady state of the network. This approach relies on the assumption that mode competition steers the network to the ground-state solution of the Ising model. By considering a broad family of frustrated Ising models, we show that the most efficient mode does not correspond generically to the ground state of the Ising model. We infer that networks of parametric oscillators close to threshold are intrinsically not Ising solvers. Nevertheless, the network can find the correct solution if the oscillators are driven sufficiently above threshold, in a regime where nonlinearities play a predominant role. We find that for all probed instances of the model, the network converges to the ground state of the Ising model with a finite probability.

שפה מקוריתאנגלית
מספר המאמר143901
כתב עתPhysical Review Letters
מספר גיליון14
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 9 אפר׳ 2021

ASJC Scopus subject areas

  • ???subjectarea.asjc.3100.3100???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Can Nonlinear Parametric Oscillators Solve Random Ising Models?'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי