Bipartite rigidity

פרסום מחקרי: פרק בספר / בדוח / בכנספרקביקורת עמיתים

תקציר

We develop a bipartite rigidity theory for bipartite graphs parallel to the classical rigidity theory for general graphs. This theory coincides with the study of Babson–Novik’s balanced shifting restricted to graphs. We establish bipartite analogs of the cone, contraction, deletion, and gluing lemmas, and apply these results to derive a bipartite analog of the rigidity criterion for planar graphs. Our result asserts that a bipartite graph is planar only if its balanced shifting does not contain K3, 3. We also discuss potential applications of this theory to Jockusch’s cubical lower bound conjecture and to upper bound conjectures for embedded simplicial complexes.

שפה מקוריתאנגלית אמריקאית
כותר פרסום המארחSpringer INdAM Series
עורכיםBruno Benedetti, Emanuele Delucchi, Luca Moci
עמודים107-114
מספר עמודים8
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 1 ינו׳ 2015

סדרות פרסומים

שםSpringer INdAM Series
כרך12

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2600???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Bipartite rigidity'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי