D Falik, Ehud Friedgut

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים


A central theme in social choice theory is that of impossibility theorems, such as Arrow's theorem [Arr63] and the Gibbard-Satterthwaite theorem [Gib73, Sat75], which state that under certain natural constraints, social choice mechanisms are impossible to construct. In recent years, beginning in Kalai [Kal01], much work has been done in finding robust versions of these theorems, showing "approximate" impossibility remains even when most, but not all, of the constraints are satisfied. We study a spectrum of settings between the case where society chooses a single outcome (a-laGibbard-Satterthwaite) and the choice of a complete order (as in Arrow's theorem). We use algebraic techniques, specifically representation theory of the symmetric group, and also prove robust versions of the theorems that we state. Our relaxations of the constraints involve relaxing of a version of "independence of irrelevant alternatives", rather than relaxing the demand of a transitive outcome, as is done in most other robustness results.
שפה מקוריתאנגלית
עמודים (מ-עד)247-297
מספר עמודים51
כתב עתIsrael Journal of Mathematics
מספר גיליון1
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - ינו׳ 2014

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'BETWEEN ARROW AND GIBBARD-SATTERTHWAITE A REPRESENTATION THEORETIC APPROACH'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי