Best constants for two families of higher order critical Sobolev embeddings

Itai Shafrir, Daniel Spector

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

In this paper we obtain the best constants in some higher order Sobolev inequalities in the critical exponent. These inequalities can be separated into two types: those that embed into [Formula presented] and those that embed into slightly larger target spaces. Concerning the former, we show that for [Formula presented], [Formula presented] even, one has an optimal constant [Formula presented] such that [Formula presented]for all [Formula presented] (the case [Formula presented] was handled in Shafrir, 2018). Meanwhile the most significant of the latter is a variation of D. Adams’ higher order inequality of J. Moser: For [Formula presented], [Formula presented] and [Formula presented], there exists [Formula presented] and optimal constant [Formula presented] such that [Formula presented]for all [Formula presented] such that [Formula presented], where [Formula presented] is the traditional semi-norm on the space [Formula presented].

שפה מקוריתאנגלית
עמודים (מ-עד)753-769
מספר עמודים17
כתב עתNonlinear Analysis, Theory, Methods and Applications
כרך177
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - דצמ׳ 2018

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2603???
  • ???subjectarea.asjc.2600.2604???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Best constants for two families of higher order critical Sobolev embeddings'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי