AnySURF: Flexible local features computation

Eran Sadeh-Or, Gal A. Kaminka

פרסום מחקרי: פרק בספר / בדוח / בכנספרקביקורת עמיתים

תקציר

Many vision-based tasks for autonomous robotics are based on feature matching algorithms, finding point correspondences between two images. Unfortunately, existing algorithms for such tasks require significant computational resources and are designed under the assumption that they will run to completion and only then return a complete result. Since partial results-a subset of all features in the image-are often sufficient, we propose in this paper a computationally-flexible algorithm, where results monotonically increase in quality, given additional computation time. The proposed algorithm, coined AnySURF (Anytime SURF), is based on the SURF scale- and rotation-invariant interest point detector and descriptor. We achieve flexibility by re-designing several major steps, mainly the feature search process, allowing results with increasing quality to be accumulated. We contrast different design choices for AnySURF and evaluate the use of AnySURF in a series of experiments. Results are promising, and show the potential for dynamic anytime performance, robust to the available computation time.

שפה מקוריתאנגלית
כותר פרסום המארחRoboCup 2011
כותר משנה של פרסום המארחRobot Soccer World Cup XV
עורכיםThomas Rofer, Norbert Michael Mayer, Jesus Savage, Uluc Saranli
עמודים174-185
מספר עמודים12
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - 2012

סדרות פרסומים

שםLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
כרך7416 LNCS

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2614???
  • ???subjectarea.asjc.1700.1700???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'AnySURF: Flexible local features computation'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי