Affine-invariant geodesic geometry of deformable 3D shapes

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

Natural objects can be subject to various transformations yet still preserve properties that we refer to as invariants. Here, we use definitions of affine-invariant arclength for surfaces in R3 in order to extend the set of existing non-rigid shape analysis tools. We show that by re-defining the surface metric as its equi-affine version, the surface with its modified metric tensor can be treated as a canonical Euclidean object on which most classical Euclidean processing and analysis tools can be applied. The new definition of a metric is used to extend the fast marching method technique for computing geodesic distances on surfaces, where now, the distances are defined with respect to an affine-invariant arclength. Applications of the proposed framework demonstrate its invariance, efficiency, and accuracy in shape analysis.

שפה מקוריתאנגלית
עמודים (מ-עד)692-697
מספר עמודים6
כתב עתComputers and Graphics (Pergamon)
כרך35
מספר גיליון3
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יוני 2011

ASJC Scopus subject areas

  • ???subjectarea.asjc.1700.1712???
  • ???subjectarea.asjc.2200.2200???
  • ???subjectarea.asjc.1700.1711???
  • ???subjectarea.asjc.1700.1709???
  • ???subjectarea.asjc.1700.1707???
  • ???subjectarea.asjc.1700.1704???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'Affine-invariant geodesic geometry of deformable 3D shapes'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי