About reducing integro-differential equations with infinite limits of integration to systems of ordinary differential equations

Yakov Goltser, Alexander Domoshnitsky

פרסום מחקרי: פרסום בכתב עתמאמרביקורת עמיתים

תקציר

The purpose of this paper is to propose a method for studying integro-differential equations with infinite limits of integration. The main idea of this method is to reduce integro-differential equations to auxiliary systems of ordinary differential equations. Results: a scheme of the reduction of integro-differential equations with infinite limits of integration to these auxiliary systems is described and a formula for representation of bounded solutions, based on fundamental matrices of these systems, is obtained. Conclusion: methods proposed in this paper could be a basis for the Floquet theory and studies of stability, bifurcations, parametric resonance and various boundary value problems. As examples, models of tumor-immune system interaction, hematopoiesis and plankton-nutrient interaction are considered.

שפה מקוריתאנגלית
מספר המאמר187
כתב עתAdvances in Difference Equations
כרך2013
מזהי עצם דיגיטלי (DOIs)
סטטוס פרסוםפורסם - יוני 2013

ASJC Scopus subject areas

  • ???subjectarea.asjc.2600.2603???
  • ???subjectarea.asjc.2600.2602???
  • ???subjectarea.asjc.2600.2604???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'About reducing integro-differential equations with infinite limits of integration to systems of ordinary differential equations'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי