A topological perspective for information-theoretic multi-robot belief space planning in unknown environments

Andrej Kitanov, Vadim Indelman

פרסום מחקרי: תוצר מחקר מכנסהרצאהביקורת עמיתים

תקציר

In this paper we introduce a novel concept, topological belief space planning (BSP), that uses topological properties of the underlying factor graph representation of future posterior beliefs to direct the search for an optimal solution. This concept deviates from state-of-the-art BSP approaches and is motivated by recent results which indicated, in the context of graph pruning, that topological properties of factor graphs dominantly determine the estimation accuracy. Topological space is also often less dimensional than the embedded state space. In particular, we show how this novel concept can be used in multi-robot decentralized belief space planning in high-dimensional state spaces to overcome draw- backs of state-of-the-art approaches: computational intractability of an exhaustive objective evaluation for all candidate path combinations from different robots and dependence on the initial guess in the announced path approach, which can lead to a local minimum of the objective function. We demonstrate our approach in a synthetic simulation.

שפה מקוריתאנגלית
עמודים1020-1036
מספר עמודים17
סטטוס פרסוםפורסם - 2018
אירוע58th Israel Annual Conference on Aerospace Sciences, IACAS 2018 - Tel-Aviv and Haifa, ישראל
משך הזמן: 14 מרץ 201815 מרץ 2018

כנס

כנס58th Israel Annual Conference on Aerospace Sciences, IACAS 2018
מדינה/אזורישראל
עירTel-Aviv and Haifa
תקופה14/03/1815/03/18

ASJC Scopus subject areas

  • ???subjectarea.asjc.2200.2202???
  • ???subjectarea.asjc.1900.1912???

טביעת אצבע

להלן מוצגים תחומי המחקר של הפרסום 'A topological perspective for information-theoretic multi-robot belief space planning in unknown environments'. יחד הם יוצרים טביעת אצבע ייחודית.

פורמט ציטוט ביבליוגרפי