ZOQO: Zero-Order Quantized Optimization

Noga Bar, Raja Giryes

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The increasing computational and memory demands in deep learning present significant challenges, especially in resource-constrained environments. We introduce a zero-order quantized optimization (ZOQO) method designed for training models with quantized parameters and operations. Our approach leverages zero-order approximations of the gradient sign and adapts the learning process to maintain the parameters' quantization without the need for full-precision gradient calculations. We demonstrate the effectiveness of ZOQO through experiments in fine-tuning of large language models and black-box adversarial attacks. Despite the limitations of zero-order and quantized operations training, our method achieves competitive performance compared to full-precision methods, highlighting its potential for low-resource environments.

Original languageEnglish
Title of host publication2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Proceedings
EditorsBhaskar D Rao, Isabel Trancoso, Gaurav Sharma, Neelesh B. Mehta
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9798350368741
DOIs
StatePublished - 2025
Event2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025 - Hyderabad, India
Duration: 6 Apr 202511 Apr 2025

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings

Conference

Conference2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
Country/TerritoryIndia
CityHyderabad
Period6/04/2511/04/25

Keywords

  • Adversarial attacks
  • Quantization
  • ZO-optimization

All Science Journal Classification (ASJC) codes

  • Software
  • Signal Processing
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'ZOQO: Zero-Order Quantized Optimization'. Together they form a unique fingerprint.

Cite this