Yu-Shiba-Rusinov states in phase-biased superconductor-quantum dot-superconductor junctions

Gediminas Kiršanskas, Moshe Goldstein, Karsten Flensberg, Leonid I. Glazman, Jens Paaske

Research output: Contribution to journalArticlepeer-review

Abstract

We study the effects of a phase difference on Yu-Shiba-Rusinov (YSR) states in a spinful Coulomb-blockaded quantum dot contacted by a superconducting loop. In the limit where charging energy is larger than the superconducting gap, we determine the subgap excitation spectrum, the corresponding supercurrent, and the differential conductance as measured by a normal-metal tunnel probe. In absence of a phase difference only one linear combination of the superconductor lead electrons couples to the spin, which gives a single YSR state. With finite phase difference, however, it is effectively a two-channel scattering problem and therefore an additional state emerges from the gap edge. The energy of the phase-dependent YSR states depend on the gate voltage and one state can cross zero energy twice inside the valley with odd occupancy. These crossings are shifted by the phase difference towards the charge degeneracy points, corresponding to larger exchange couplings. Moreover, the zero-energy crossings give rise to resonant peaks in the differential conductance with magnitude 4e2/h. Finally, we demonstrate that the quantum fluctuations of the dot spin do not alter qualitatively any of the results.

Original languageEnglish
Article number235422
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume92
Issue number23
DOIs
StatePublished - 14 Dec 2015

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Yu-Shiba-Rusinov states in phase-biased superconductor-quantum dot-superconductor junctions'. Together they form a unique fingerprint.

Cite this