Yolk sac development, function and role in rodent pregnancy

Asher Ornoy, Richard K. Miller

Research output: Contribution to journalReview articlepeer-review

Abstract

During the early phases of embryonic development, the yolk sac serves as an initial placenta in many animal species. While in some, this role subsides around the end of active organogenesis, it continues to have important functions in rodents, alongside the chorio-allantoic placenta. The yolk sac is the initial site of hematopoiesis in many animal species including primates. Cells of epiblastic origin form blood islands that are the forerunners of hematopoietic cells and of the primitive endothelial cells that form the vitelline circulation. The yolk sac is also a major route of embryonic and fetal nutrition apparently as long as it functions. In mammals and especially rodents, macro and micronutrients are absorbed by active pinocytosis into the visceral yolk sac, degraded and the degradation products (i.e., amino acids) are then transferred to the embryo. Interference with the yolk sac function may directly reflect on embryonic growth and development, inducing congenital malformations or in extreme damage, causing embryonic and fetal death. In rodents, many agents were found to damage the yolk sac (i.e., anti–yolk sac antibodies or toxic substances interfering with yolk sac pinocytosis) subsequently affecting the embryo/fetus. Often, the damage to the yolk sac is transient while embryonic damage persists. In humans, decreased yolk sac diameter was associated with diabetic pregnancies and increased diameter was associated with pregnancy loss. In addition, culture of rat yolk sacs in serum obtained from pregnant diabetic women or from women with autoimmune diseases induced severe damage to the visceral yolk sac epithelium and embryonic malformations. It can be concluded that as a result of the crucial role of the yolk sac in the well-being of the early embryo, any damage to its normal function may severely and irreversibly affect further development of the embryo/fetus.

Original languageEnglish
Pages (from-to)1243-1254
Number of pages12
JournalBirth Defects Research
Volume115
Issue number14
DOIs
StatePublished - 15 Aug 2023
Externally publishedYes

Keywords

  • dysfunction
  • function
  • human
  • rodents
  • teratogenicity
  • yolk sac

All Science Journal Classification (ASJC) codes

  • Pediatrics, Perinatology, and Child Health
  • Embryology
  • Toxicology
  • Developmental Biology
  • Health, Toxicology and Mutagenesis

Fingerprint

Dive into the research topics of 'Yolk sac development, function and role in rodent pregnancy'. Together they form a unique fingerprint.

Cite this