TY - GEN
T1 - Worst-Case to Expander-Case Reductions
AU - Abboud, Amir
AU - Wallheimer, Nathan
N1 - Publisher Copyright: © Amir Abboud and Nathan Wallheimer; licensed under Creative Commons License CC-BY 4.0.
PY - 2023/1/1
Y1 - 2023/1/1
N2 - In recent years, the expander decomposition method was used to develop many graph algorithms, resulting in major improvements to longstanding complexity barriers. This powerful hammer has led the community to (1) believe that most problems are as easy on worst-case graphs as they are on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining longstanding barriers in fine-grained complexity. We set out to investigate the extent to which these two things are true (and for which problems). Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We design a collection of such reductions for fundamental graph problems, verifying belief (1) for them. The list includes k-Clique, 4-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple gadget reduction, not via expander decompositions, showing that this hammer is effectively useless against the problem and contradicting (2).
AB - In recent years, the expander decomposition method was used to develop many graph algorithms, resulting in major improvements to longstanding complexity barriers. This powerful hammer has led the community to (1) believe that most problems are as easy on worst-case graphs as they are on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining longstanding barriers in fine-grained complexity. We set out to investigate the extent to which these two things are true (and for which problems). Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We design a collection of such reductions for fundamental graph problems, verifying belief (1) for them. The list includes k-Clique, 4-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple gadget reduction, not via expander decompositions, showing that this hammer is effectively useless against the problem and contradicting (2).
UR - http://www.scopus.com/inward/record.url?scp=85147538069&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ITCS.2023.1
DO - https://doi.org/10.4230/LIPIcs.ITCS.2023.1
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 14th Innovations in Theoretical Computer Science Conference, ITCS 2023
A2 - Kalai, Yael Tauman
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 14th Innovations in Theoretical Computer Science Conference, ITCS 2023
Y2 - 10 January 2023 through 13 January 2023
ER -