Worst-Case to Expander-Case Reductions

Amir Abboud, Nathan Wallheimer

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In recent years, the expander decomposition method was used to develop many graph algorithms, resulting in major improvements to longstanding complexity barriers. This powerful hammer has led the community to (1) believe that most problems are as easy on worst-case graphs as they are on expanders, and (2) suspect that expander decompositions are the key to breaking the remaining longstanding barriers in fine-grained complexity. We set out to investigate the extent to which these two things are true (and for which problems). Towards this end, we put forth the concept of worst-case to expander-case self-reductions. We design a collection of such reductions for fundamental graph problems, verifying belief (1) for them. The list includes k-Clique, 4-Cycle, Maximum Cardinality Matching, Vertex-Cover, and Minimum Dominating Set. Interestingly, for most (but not all) of these problems the proof is via a simple gadget reduction, not via expander decompositions, showing that this hammer is effectively useless against the problem and contradicting (2).

Original languageEnglish
Title of host publication14th Innovations in Theoretical Computer Science Conference, ITCS 2023
EditorsYael Tauman Kalai
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959772631
DOIs
StatePublished - 1 Jan 2023
Event14th Innovations in Theoretical Computer Science Conference, ITCS 2023 - Cambridge, United States
Duration: 10 Jan 202313 Jan 2023

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume251
ISSN (Print)1868-8969

Conference

Conference14th Innovations in Theoretical Computer Science Conference, ITCS 2023
Country/TerritoryUnited States
CityCambridge
Period10/01/2313/01/23

All Science Journal Classification (ASJC) codes

  • Software

Fingerprint

Dive into the research topics of 'Worst-Case to Expander-Case Reductions'. Together they form a unique fingerprint.

Cite this