Wheeled assistive device for load carriage–the effects on human gait and biomechanics

Itay Ketko, Meir Plotnik, Ran Yanovich, Amit Gefen, Yuval Heled

Research output: Contribution to journalArticlepeer-review

Abstract

Soldiers are often required to carry loads which impose biomechanical strain on the human body. This can adversely affect physical performances. Recently, wheel-based devices (WBD) were designed to reduce the load on the soldier. In the present study, a prototype of this newly developed WBD was evaluated. Thirteen volunteers performed three exercise protocols on a treadmill as follows: (1) no load; (2) carrying 40% of their bodyweight with a backpack or; (3) with the WBD. Data acquisition included: gait parameters, vertical ground reaction forces (VGRF) and contact pressure acting on the shoulder. Biomechanical analysis showed that the WBD decreased the contact pressure on the shoulder and the VGRF. However, greater gait variability, in terms of cycle-to-cycle gait line generation, was observed, which might point to a difficulty in maintaining stability while walking. The study suggests that WBD has a potential to reduce the biomechanical strain on the soldier while carrying heavy loads. Future potential adjustments for the development of a better WBD-based solution are suggested. Practitioner Summary: The present research observed the potential biomechanical advantages of using a wheel-based device designed to reduce the load on the soldier. It contributed to a lower mechanical force on the soldier’s body, yet causing modulations in gait control. Future design adjustments should be made to optimise the platform.

Original languageEnglish
Pages (from-to)1415-1424
Number of pages10
JournalErgonomics
Volume60
Issue number10
DOIs
StatePublished - 3 Oct 2017

Keywords

  • Soldier
  • backpack
  • gait variability
  • ground reaction forces
  • pressure

All Science Journal Classification (ASJC) codes

  • Human Factors and Ergonomics
  • Physical Therapy, Sports Therapy and Rehabilitation

Fingerprint

Dive into the research topics of 'Wheeled assistive device for load carriage–the effects on human gait and biomechanics'. Together they form a unique fingerprint.

Cite this