Abstract
The synergistic influences of geometrical, mechanical and thermal mismatches between a skin-contacting medical device and the skin may cause tissue stress concentrations and sharp temperature gradients, both of which contribute to the risk for medical device-related pressure ulcers. In this work, we developed an innovative, integrated experimental bioengineering approach encompassing mechanical stiffness, friction and thermal property studies for testing the biomechanical suitability of a hydrogel-based dressing in prophylaxis of injuries caused by devices. We characterised the viscoelastic stress relaxation of the dressing and determined its long-term elastic modulus. We further measured the coefficient of friction of the hydrogel-based dressing at dressing-device and skin-dressing interfaces, using a tilting-table tribometer. Lastly, we measured the thermal conductivity of the dressing, using a heat-flow meter and infrared thermography-based method. All measurements considered dry and moist conditions, the latter simulating skin perspiration effects. Our results revealed that the long-term stiffness and the thermal conductivity of the hydrogel-based dressing matched the corresponding properties of human skin for both dry and moist conditions. The dressing further demonstrated a relatively high coefficient of friction at its skin-facing and device-facing aspects, indicating minimal frictional sliding. All these properties make the above dressing advantageous for prevention of device-related injuries.
Original language | English |
---|---|
Pages (from-to) | 515-530 |
Number of pages | 16 |
Journal | International Wound Journal |
Volume | 19 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2022 |
Keywords
- MDRPUs
- friction properties
- pressure injury
- thermal conductivity
- wound care
All Science Journal Classification (ASJC) codes
- Surgery
- Dermatology