Abstract
Weakly chaotic or weakly interacting systems have a wide regime where the common random matrix theory modeling does not apply. As an example we consider cold atoms in a nearly integrable optical billiard with a displaceable wall (piston). The motion is completely chaotic but with a small Lyapunov exponent. The Hamiltonian matrix does not look like one taken from a Gaussian ensemble, but rather it is very sparse and textured. This can be characterized by parameters s and g which reflect the percentage of large elements and their connectivity, respectively. For g we use a resistor network calculation that has a direct relation to the semilinear response characteristics of the system, hence leading to a prediction regarding the energy absorption rate of cold atoms in optical billiards with vibrating walls.
Original language | American English |
---|---|
Article number | 066216 |
Journal | Physical Review E |
Volume | 83 |
Issue number | 6 |
DOIs | |
State | Published - 30 Jun 2011 |
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Condensed Matter Physics