WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich Syndrome Protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site

Maor H. Pauker, Barak Reicher, Noah Joseph, Inbal Wortzel, Shlomi Jakubowicz, Elad Noy, Orly Perl, Mira Barda-Saad

Research output: Contribution to journalArticlepeer-review

Abstract

T cell antigen receptor (TCR) engagement has been shown to activate pathways leading to actin cytoskeletal polymerization and reorganization, which are essential for lymphocyte activation and function. Several actin regulatory proteins were implicated in regulating the actin machinery, such as members of the Wiskott-Aldrich syndrome protein (WASp) family. These include WASp and the WASp family verprolin-homologous protein-2 (WAVE2). Although WASp and WAVE2 share several structural features, the precise regulatory mechanisms and potential redundancy between them have not been fully characterized. Specifically, unlike WASp, the dynamic molecular interactions that regulate WAVE2 recruitment to the cell membrane and specifically to the TCR signaling complex are largely unknown. Here, we identify the molecular mechanism that controls the recruitment of WAVE2 in comparison with WASp. Using fluorescence resonance energy transfer (FRET) and novel triple-color FRET (3FRET) technology, we demonstrate how WAVE2 signaling complexes are dynamically regulated during lymphocyte activation in vivo. We show that, similar to WASp, WAVE2 recruitment to the TCR site depends on protein-tyrosine kinase, ZAP-70, and the adaptors LAT, SLP-76, and Nck. However, in contrast to WASp, WAVE2 leaves this signaling complex and migrates peripherally together with vinculin to the membrane leading edge. Our experiments demonstrate that WASp and WAVE2 differ in their dynamics and their associated proteins. Thus, this study reveals the differential mechanisms regulating the function of these cytoskeletal proteins.

Original languageEnglish
Pages (from-to)34503-34519
Number of pages17
JournalJournal of Biological Chemistry
Volume289
Issue number50
DOIs
StatePublished - 12 Dec 2014

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'WASp family verprolin-homologous protein-2 (WAVE2) and Wiskott-Aldrich Syndrome Protein (WASp) engage in distinct downstream signaling interactions at the T cell antigen receptor site'. Together they form a unique fingerprint.

Cite this