TY - GEN
T1 - Vortex laden flows in a micro-gap for enhanced direct chip cooling
AU - Gorodetsky, Amir
AU - Haustein, Herman D.
N1 - Publisher Copyright: © 2016 ASME.
PY - 2016
Y1 - 2016
N2 - Heat dissipation in modern high-power electronics require high performance cooling, which traditional air-based systems cannot provide. Rather, novel systems using liquids, which have inherently better heat transfer characteristics, must be used. Therefore, these have recently been extensively examined. The present study aims to identify the liquid flow patterns which significantly increase heat transfer, examine them through simulation (transient 2D laminar DNS) and experimentally realize the most promising configuration. Any such flow patterns should target a major inhibitor of heat transfer, namely, the development of the thermal boundary layer. From the literature, it was seen that traveling vortices should meet this demand, due to generation of perpendicular unsteady or periodic flows, and consequently significant disruption of the boundary layer. Traditionally, micro-channels have been widely employed for micro-electronics cooling. However, the generation and persistence of the desired vortices over longer distances, as well as a desired lower pressure drop can be obtained in micro-gaps, which have inherently overall lower wall-fluid friction. The desired vortices can be further enhanced by active methods such as inlet flow pulsation. In the present study, based on numerical simulations (gridindependent and validated against an analytical solution) a suitable micro-gap geometrical configuration was chosen, while the flow rate (Re) and excitation frequency (Strouhal number around the well-known resonance, St=0.3) with low amplitude, were examined over a wide range. Further examination led to the choice of two methods for vortex generation. The first is a use of bluff bodies as flow obstructers in the micro-gap, whereby vortex shedding (von Karman street) occurs already at low Reynolds numbers (Re>50). A preliminary experimental device was constructed with side and top view capabilities, for flow visualization, as well as the possibility of wall temperature measurement by IR thermography. Preliminary simulations and experiments showed that Vortex shedding onset was only mildly affected in the micro-scale (200 micron obstruction in 600 micron channel), while heat transfer was seen to increase three-fold over obstruction-free gap, with only mild pressure drop increase. The second method has additional advantage of imposed perpendicular flow. The model consists of a row of slot-jets in a micro-gap with cross-flow. Recent experimental and numerical studies employing a similar hybrid cooling scheme, showed significant heat flux dissipation (305 W/cm2). Here too, significant increase of the heat transfer was found, with additional increase associated with flow pulsation. In future experimental work, the intention is to include MEMS based actuators for individual control of the jets' excitation ability and effective slot width.
AB - Heat dissipation in modern high-power electronics require high performance cooling, which traditional air-based systems cannot provide. Rather, novel systems using liquids, which have inherently better heat transfer characteristics, must be used. Therefore, these have recently been extensively examined. The present study aims to identify the liquid flow patterns which significantly increase heat transfer, examine them through simulation (transient 2D laminar DNS) and experimentally realize the most promising configuration. Any such flow patterns should target a major inhibitor of heat transfer, namely, the development of the thermal boundary layer. From the literature, it was seen that traveling vortices should meet this demand, due to generation of perpendicular unsteady or periodic flows, and consequently significant disruption of the boundary layer. Traditionally, micro-channels have been widely employed for micro-electronics cooling. However, the generation and persistence of the desired vortices over longer distances, as well as a desired lower pressure drop can be obtained in micro-gaps, which have inherently overall lower wall-fluid friction. The desired vortices can be further enhanced by active methods such as inlet flow pulsation. In the present study, based on numerical simulations (gridindependent and validated against an analytical solution) a suitable micro-gap geometrical configuration was chosen, while the flow rate (Re) and excitation frequency (Strouhal number around the well-known resonance, St=0.3) with low amplitude, were examined over a wide range. Further examination led to the choice of two methods for vortex generation. The first is a use of bluff bodies as flow obstructers in the micro-gap, whereby vortex shedding (von Karman street) occurs already at low Reynolds numbers (Re>50). A preliminary experimental device was constructed with side and top view capabilities, for flow visualization, as well as the possibility of wall temperature measurement by IR thermography. Preliminary simulations and experiments showed that Vortex shedding onset was only mildly affected in the micro-scale (200 micron obstruction in 600 micron channel), while heat transfer was seen to increase three-fold over obstruction-free gap, with only mild pressure drop increase. The second method has additional advantage of imposed perpendicular flow. The model consists of a row of slot-jets in a micro-gap with cross-flow. Recent experimental and numerical studies employing a similar hybrid cooling scheme, showed significant heat flux dissipation (305 W/cm2). Here too, significant increase of the heat transfer was found, with additional increase associated with flow pulsation. In future experimental work, the intention is to include MEMS based actuators for individual control of the jets' excitation ability and effective slot width.
UR - http://www.scopus.com/inward/record.url?scp=85001760425&partnerID=8YFLogxK
U2 - https://doi.org/10.1115/ICNMM2016-8047
DO - https://doi.org/10.1115/ICNMM2016-8047
M3 - منشور من مؤتمر
T3 - ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
BT - ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
T2 - ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, ICNMM 2016, collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
Y2 - 10 July 2016 through 14 July 2016
ER -