TY - GEN
T1 - Visualization of Supervised and Self-Supervised Neural Networks via Attribution Guided Factorization
AU - Gur, Shir
AU - Ali, Ameen
AU - Wolf, Lior
N1 - Publisher Copyright: Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - Neural network visualization techniques mark image locations by their relevancy to the network’s classification. Existing methods are effective in highlighting the regions that affect the resulting classification the most. However, as we show, these methods are limited in their ability to identify the support for alternative classifications, an effect we name the saliency bias hypothesis. In this work, we integrate two lines of research: gradient-based methods and attribution-based methods, and develop an algorithm that provides per-class explainability. The algorithm back-projects the per pixel local influence, in a manner that is guided by the local attributions, while correcting for salient features that would otherwise bias the explanation. In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization, and not just the predicted label. Remarkably, the method obtains state of the art results in benchmarks that are commonly applied to gradient-based methods as well as in those that are employed mostly for evaluating attribution methods. Using a new unsupervised procedure, our method is also successful in demonstrating that self-supervised methods learn semantic information. Our code is available at: https://github.com/shirgur/AGFVisualization.
AB - Neural network visualization techniques mark image locations by their relevancy to the network’s classification. Existing methods are effective in highlighting the regions that affect the resulting classification the most. However, as we show, these methods are limited in their ability to identify the support for alternative classifications, an effect we name the saliency bias hypothesis. In this work, we integrate two lines of research: gradient-based methods and attribution-based methods, and develop an algorithm that provides per-class explainability. The algorithm back-projects the per pixel local influence, in a manner that is guided by the local attributions, while correcting for salient features that would otherwise bias the explanation. In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization, and not just the predicted label. Remarkably, the method obtains state of the art results in benchmarks that are commonly applied to gradient-based methods as well as in those that are employed mostly for evaluating attribution methods. Using a new unsupervised procedure, our method is also successful in demonstrating that self-supervised methods learn semantic information. Our code is available at: https://github.com/shirgur/AGFVisualization.
UR - http://www.scopus.com/inward/record.url?scp=85130072465&partnerID=8YFLogxK
U2 - https://doi.org/10.1609/aaai.v35i13.17374
DO - https://doi.org/10.1609/aaai.v35i13.17374
M3 - منشور من مؤتمر
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 11545
EP - 11554
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -