VI-VS: calibrated identification of feature dependencies in single-cell multiomics

Pierre Boyeau, Stephen Bates, Can Ergen, Michael I. Jordan, Nir Yosef

Research output: Contribution to journalArticlepeer-review

Abstract

Unveiling functional relationships between various molecular cell phenotypes from data using machine learning models is a key promise of multiomics. Existing methods either use flexible but hard-to-interpret models or simpler, misspecified models. VI-VS (Variational Inference for Variable Selection) balances flexibility and interpretability to identify relevant feature relationships in multiomic data. It uses deep generative models to identify conditionally dependent features, with false discovery rate control. VI-VS is available as an open-source Python package, providing a robust solution to identify features more likely representing genuine causal relationships.

Original languageEnglish
Article number294
JournalGENOME BIOLOGY
Volume25
Issue number1
DOIs
StatePublished - 15 Nov 2024

All Science Journal Classification (ASJC) codes

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Cell Biology

Cite this