@inproceedings{491df615c2b247639adb45c518a1bed8,
title = "VF-NeRF: Viewshed Fields for Rigid NeRF Registration",
abstract = "3D scene registration is a fundamental problem in computer vision that seeks the best 6-DoF alignment between two scenes. This problem was extensively investigated in the case of point clouds and meshes, but there has been relatively limited work regarding Neural Radiance Fields (NeRF). In this paper, we consider the problem of rigid registration between two NeRFs when the position of the original cameras is not given. Our key novelty is the introduction of Viewshed Fields (VF), an implicit function that determines, for each 3D point, how likely it is to be viewed by the original cameras. We demonstrate how VF can help in the various stages of NeRF registration, with an extensive evaluation showing that VF-NeRF achieves SOTA results on various datasets with different capturing approaches such as LLFF and Objaverese. Our code will be made publicly available.",
keywords = "3D registration, Neural radiance fields, Normalizing-flows",
author = "Leo Segre and Shai Avidan",
note = "Publisher Copyright: {\textcopyright} The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.; 18th European Conference on Computer Vision, ECCV 2024 ; Conference date: 29-09-2024 Through 04-10-2024",
year = "2025",
doi = "https://doi.org/10.1007/978-3-031-73027-6_10",
language = "الإنجليزيّة",
isbn = "9783031730269",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "164--181",
editor = "Ale{\v s} Leonardis and Elisa Ricci and Stefan Roth and Olga Russakovsky and Torsten Sattler and G{\"u}l Varol",
booktitle = "Computer Vision – ECCV 2024 - 18th European Conference, Proceedings",
address = "ألمانيا",
}