TY - GEN
T1 - Versatile approach for frequency resolved wavefront characterization
AU - Frumker, Eugene
AU - Paulus, Gerhard G.
AU - Niikura, Hiromichi
AU - Villeneuve, David M.
AU - Corkum, Paul B.
PY - 2011/4/18
Y1 - 2011/4/18
N2 - Spatial characterization of high harmonics (HH) and XUV coherent radiation is of paramount importance, along with its temporal characterization. For many applications it will be necessary to accurately measure the beam properties, just as it is important to know the beam characteristics for many laser experiments. For example, high harmonics and attosecond pulses are being proposed as a front-end for the next generation X-ray free electron lasers. This oscillator-amplifier-like arrangement will require well characterized high harmonic sources. On the other hand, the electromagnetic radiation carries the combined signature of underlying quantum physical processes at the molecular level and of the cooperative phase matching. For example, accurate reconstruction of the high harmonic spatial wavefront, along with its temporal profile, gives us a complete range of tools to apply to the fundamental quantum properties and dynamics associated with high harmonic generation. We present a new concept of frequency resolved wavefront characterization that is particularly suitable for characterizing XUV radiation. In keeping with tradition in the area we give it an acronym - SWORD (Spectral Wavefront Optical Reconstruction by Diffraction). Our approach is based on an analysis of the diffraction pattern of a slit situated in front of a flat-field spectrometer. As the slit is scanned, the spectrally resolved diffraction pattern is recorded. Analyzing the measured diffractogram, we can reconstruct the wavefront. The technique can be easily extended beyond the XUV spectral region. When combined with temporal characterization techniques all information about the beam can be measured.
AB - Spatial characterization of high harmonics (HH) and XUV coherent radiation is of paramount importance, along with its temporal characterization. For many applications it will be necessary to accurately measure the beam properties, just as it is important to know the beam characteristics for many laser experiments. For example, high harmonics and attosecond pulses are being proposed as a front-end for the next generation X-ray free electron lasers. This oscillator-amplifier-like arrangement will require well characterized high harmonic sources. On the other hand, the electromagnetic radiation carries the combined signature of underlying quantum physical processes at the molecular level and of the cooperative phase matching. For example, accurate reconstruction of the high harmonic spatial wavefront, along with its temporal profile, gives us a complete range of tools to apply to the fundamental quantum properties and dynamics associated with high harmonic generation. We present a new concept of frequency resolved wavefront characterization that is particularly suitable for characterizing XUV radiation. In keeping with tradition in the area we give it an acronym - SWORD (Spectral Wavefront Optical Reconstruction by Diffraction). Our approach is based on an analysis of the diffraction pattern of a slit situated in front of a flat-field spectrometer. As the slit is scanned, the spectrally resolved diffraction pattern is recorded. Analyzing the measured diffractogram, we can reconstruct the wavefront. The technique can be easily extended beyond the XUV spectral region. When combined with temporal characterization techniques all information about the beam can be measured.
KW - XUV coherent radiation
KW - attosecond pulses
KW - high harmonics
KW - wavefront sensing
UR - http://www.scopus.com/inward/record.url?scp=79953862275&partnerID=8YFLogxK
U2 - https://doi.org/10.1117/12.886304
DO - https://doi.org/10.1117/12.886304
M3 - Conference contribution
SN - 9780819484628
T3 - Proceedings of SPIE - The International Society for Optical Engineering
BT - Frontiers in Ultrafast Optics
T2 - Frontiers in Ultrafast Optics: Biomedical, Scientific, and Industrial Applications XI
Y2 - 23 January 2011 through 26 January 2011
ER -