Verifying properties of binarized deep neural networks

Nina Narodytska, Mooly Sagiv, Shiva Kasiviswanathan, Leonid Ryzhyk, Toby Walsh

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Understanding properties of deep neural networks is an important challenge in deep learning. In this paper, we take a step in this direction by proposing a rigorous way of verifying properties of a popular class of neural networks, Binarized Neural Networks, using the well-developed means of Boolean satisfiability. Our main contribution is a construction that creates a representation of a binarized neural network as a Boolean formula. Our encoding is the first exact Boolean representation of a deep neural network. Using this encoding, we leverage the power of modern SAT solvers along with a proposed counterexample-guided search procedure to verify various properties of these networks. A particular focus will be on the critical property of robustness to adversarial perturbations. For this property, our experimental results demonstrate that our approach scales to medium-size deep neural networks used in image classification tasks. To the best of our knowledge, this is the first work on verifying properties of deep neural networks using an exact Boolean encoding of the network.

Original languageEnglish
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Pages6615-6624
Number of pages10
ISBN (Electronic)9781577358008
StatePublished - 2018
Externally publishedYes
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: 2 Feb 20187 Feb 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Conference

Conference32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period2/02/187/02/18

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Verifying properties of binarized deep neural networks'. Together they form a unique fingerprint.

Cite this