Abstract
Introduction: The mass-harvesting of digitized medical data has prompted their use as a clinical and research tool. The purpose of this study was to compare the accuracy and reliability of artificial intelligence derived cephalometric landmark identification with that of human observers. Methods: Ten pre-treatment digital lateral cephalometric radiographs were randomly selected from a university post-graduate clinic. The x- and y-coordinates of 21 (i.e., 42 points) hard and soft tissue landmarks were identified by 6 specialists, 19 residents, 4 imaging technicians, and a commercially available convolutional neural network artificial intelligence platform (CephX, Orca Dental, Hertzylia, Israel). Wilcoxon, Spearman and Bartlett tests were performed to compare agreement of human and AI landmark identification. Results: Six x- or y-coordinates (14.28%) were found to be statistically different, with only one being outside the 2 mm range of acceptable error, and with 97.6% of coordinates found to be within this range. Conclusions: The use of convolutional neural network artificial intelligence as a tool for cephalometric landmark identification was found to be highly accurate and can serve as an aid in orthodontic diagnosis.
Original language | English |
---|---|
Article number | 12784 |
Journal | Applied Sciences (Switzerland) |
Volume | 12 |
Issue number | 24 |
DOIs | |
State | Published - Dec 2022 |
Keywords
- artificial intelligence
- convolutional neural networks
- diagnostics
- lateral cephalometric radiographs
All Science Journal Classification (ASJC) codes
- General Engineering
- Instrumentation
- Fluid Flow and Transfer Processes
- Process Chemistry and Technology
- General Materials Science
- Computer Science Applications