Abstract
Skin sun exposure induces two protection programs: stress responses and pigmentation, the former within minutes and the latter only hours afterward. Although serving the same physiological purpose, it is not known whether and how these programs are coordinated. Here, we report that UVB exposure every other day induces significantly more skin pigmentation than the higher frequency of daily exposure, without an associated increase in stress responses. Using mathematical modeling and empirical studies, we show that the melanocyte master regulator, MITF, serves to synchronize stress responses and pigmentation and, furthermore, functions as a UV-protection timer via damped oscillatory dynamics, thereby conferring a trade-off between the two programs. MITF oscillations are controlled by multiple negative regulatory loops, one at the transcriptional level involving HIF1α and another post-transcriptional loop involving microRNA-148a. These findings support trait linkage between the two skin protection programs, which, we speculate, arose during furless skin evolution to minimize skin damage. Malcov-Brog et al. report that UVB exposure every other day induces more skin pigmentation than daily exposure. This reveals a trade-off between the two skin protection programs, pigmentation and stress response. MITF synchronizes skin protection programs and functions as a UV-protection timer via damped oscillatory dynamics, controlled by multiple negative regulatory loops.
Original language | English |
---|---|
Pages (from-to) | 444-456.e7 |
Journal | Molecular Cell |
Volume | 72 |
Issue number | 3 |
DOIs | |
State | Published - 1 Nov 2018 |
Keywords
- MITF dynamics
- UVB radiation
- skin pigmentation
- skin proliferation
- trait linkage
All Science Journal Classification (ASJC) codes
- Molecular Biology
- Cell Biology