Abstract
There are significant controversies surrounding the detection of precursors that may precede earthquakes. Natural hazard signatures associated with strong earthquakes can appear in the lithosphere, troposphere, and ionosphere, where current remote sensing technologies have become valuable tools for detecting and measuring early warning signals of stress build-up deep in the Earth’s crust (presumably associated with earthquake events). Here, we propose implementing a machine learning support vector machine (SVM) technique, applied with GPS ionospheric total electron content (TEC) pre-processed time series estimations, to evaluate potential precursors caused by earthquakes and manifested as disturbances in the TEC data. After filtering and screening our data for solar or geomagnetic influences at different time scales, our results indicate that for large earthquakes (> Mw 6), true negative predictions can be achieved with 85.7% accuracy, and true positive predictions with an accuracy of 80%. We tested our method with different skill scores, such as accuracy (0.83), precision (0.85), recall (0.8), the Heidke skill score (0.66), and true skill statistics (0.66).
Original language | American English |
---|---|
Article number | 2822 |
Journal | Remote Sensing |
Volume | 14 |
Issue number | 12 |
DOIs | |
State | Published - Jan 2022 |
Keywords
- SVM
- TEC
- earthquake prediction
- machine learning
- natural hazards